
A Spectral Bound for D-Optimality

Chun Wa Ko
55-906 River Drive South

Jersey City, New Jersey 07310, USA

Jon Lee
Department of Mathematics

University of Kentucky
Lexington, Kentucky 40506-0027, USA

Kevin Wayne
School of Operations Research and Industrial Engineering

Cornell University
Ithaca, New York 14853, USA

Abstract. We introduce a new spectral bound for D-Optimal design problems, based on singular values. We
compare the spectral bound to a bound based on Hadamard’s inequality which was introduced by Welch. In
particular, we demonstrate that (i) in general, neither bound dominates the other, (ii) the spectral bound is
superior in a general situation of highly replicated designs, and (iii) the spectral bound is superior when a
very accurate bound is required in situations of singularity. In addition, we empirically demonstrate that a
branch-and-bound scheme based on both bounds can be quite effective in finding provably D-optimal designs.

KEY WORDS AND PHRASES: D-optimal; Design; Branch and bound; Generalized variance; Singular
values.

1. Introduction. We consider the linear model

yi = xiβ + εi (i ∈ N),

where each 1 × m vector xi is a potential design point with associated response yi, the εi are i.i.d. with
E[εi] = 0 and V [εi] = σ2, β is an m× 1 vector of parameters to be estimated, and N is an n-set of indices.
We assume that there are m linearly independent design points amongst the n points. We consider the
situation where we are given an e-set E of N , an f -subset F of E, and an integer s with f ≤ s ≤ e, and we
are to choose an s-set S satisfying F ⊂ S ⊂ E. Of course, there is really no added generality in allowing
E �= N , but this notation will aid our later exposition. Many criteria have been proposed to define a “best”
such set S. Let X(S) be the s ×m design matrix with rows xi, i ∈ S, and let D(S) := Xt(S)X(S). Our
criterion, which we seek to maximize, is the determinant of D(S). That is, we wish to solve

P (F,E, s) : max
{
det(D(S)) : F ⊂ S ⊂ E, |S| = s

}
.

Our problem is equivalent to that of minimizing the generalized variance of the the least-squares estimator
of β in the linear model.

This is the so-called “|XtX |” or “D-optimality” criterion, which has been studied extensively. Smith
(1918) was the first to study a formal criterion for the problem. Wald (1943) proposed the D-optimality
criterion which he studied in the context of hypothesis testing. The criterion was further studied and
developed by Mood (1946), and then Kiefer and Wolfowitz (1959) who coined the term “D-optimality”.
Methods to search for D-optimal designs have been suggested by Dykstra (1971), Federov (1972), Wynn
(1970, 1972), Mitchell (1974). The papers by St. John and Draper (1975) and by Cook and Nachtsheim
(1980) survey the state of the art up through the late 1970’s, while Atkinson and Donev (1988), Dodge et al.
(1988), and Yonchev (1988) discuss more recent progress. Welch (1982) proposed the first general algorithm
for finding a provably D-optimal design. His method is based on a general framework of combinatorial
optimization called branch-and-bound. To implement the framework Welch used lower bounds obtained by
an exchange method, and two upper bounds that he proposed. One is based on Hadamard’s inequality, and
the other is based upon an iterative method for generating an optimal “approximate design”.

In Section 2, we establish the inherent difficulty of finding a D-optimal design by showing that it is
as hard as the NP-Complete problems of computational complexity theory. In Section 3, we establish a
spectral upper bound on det(D(S)), based on the singular values of a matrix. We also discuss a variant
of the Hadamard bound of Welch. We confine our attention to these two bounds, and we do not discuss
or use Welch’s other upper bound which is much more time consuming to calculate. We demonstrate that
(i) neither bound always dominates the other, (ii) the spectral bound dominates the Hadamard bound in
situations where highly replicated designs are sought, and (iii) the spectral bound dominates the Hadamard
bound when very precise bounds are required in the case in which D(F) is singular. In Section 4, we describe
a complete branch-and-bound algorithm based on both the Hadamard bound and the spectral bound, and
we provide results of some computational experiments. We document several situations where judicious use
of the spectral bound can decrease memory and time requirements of a branch-and-bound method based on
just the Hadamard bound.

Using ideas similar to those of this paper, Ko, Lee and Queyranne (1993) established the theoretical
complexity of finding a maximum-entropy design, and demonstrated how a bound based on the eigenvalues
of a matrix could be successfully used in a branch-and-bound method.

2. Computational Complexity. The difficulty that researchers have had in finding efficient procedures
to determine D-optimal designs suggests that the problem is somehow inherently difficult. Efficient means
that the number of basic computational steps (e.g., additions, multiplications, divisions, comparisons) of the
algorithm grows no faster than a polynomial in the number of bits of a parsimonious encoding of the data.
Furthermore, the number of bits necessary to encode numbers that arise in the course of the algorithm should
also be bounded by a polynomial in the size of the input (see Garey and Johnson (1979) for more details).
In this section, we prove that an efficient algorithm for finding a D-optimal design would yield efficient
algorithms for all problems in the computational complexity class NP (see Garey and Johnson). Since most
researchers in the theory of computation doubt that efficient algorithms exist for all problems in NP, this

1

suggests that an efficient algorithm does not exist for finding D-optimal designs. More optimistically, if we
could find an efficient algorithm for finding D-optimal designs, we will have found a surprising solution to
the most important open problem in theoretical computer science!

We require some concepts from graph theory (see Bondy and Murty (1976)). A finite simple graph G is
defined by its finite vertex-set V (G), and its edge set E(G) which is a set of two-element subsets of V (G).
The vertex set {i, j, k} induces a triangle of G if {i, j}, {j, k} and {k, i} are all in E(G). A graph G on 3k
vertices can be partitioned into triangles if there is a partition of V (G) into k disjoint three-element sets such
that each three-element set induces a triangle of G.

The NP-complete problems are the hardest problems in NP, in the sense that the existence of an efficient
algorithm for any one of them implies the existence of efficient algorithms for all problems in NP (see Garey
and Johnson).

Proposition 2.1. (T.J. Schaefer (1974) unpublished; see proof in Garey and Johnson pp. 68-69). The
problem of determining whether a graph G on 3k vertices can be partitioned into triangles is NP-complete.

We will demonstrate that the problem of partitioning a graph into triangles can be reduced to the
problem of finding a D-optimal experimental design. First, we must set some notation and establish some
lemmata.

For a graph G, let A(G) denote the adjacency matrix of G; that is, the rows and columns of A(G) are
indexed by V (G), and

aij(G) =

{
1, if {i, j} ∈ E(G);
0, if {i, j} /∈ E(G),

for all vertices i and j. For a vertex i, let deg(i) denote the number of edges containing i. Let D(G) be the
matrix with rows and columns indexed by V (G) defined by

dij(G) =

{
deg(i), if i = j;
0, if i �= j,

for all vertices i and j. Finally, let B(G) denote the vertex-edge incidence matrix of G; that is, the rows of
B(G) are indexed by V (G), the columns of B(G) are indexed by E(G), and

bie(G) =

{
1, if i ∈ e;
0, if i /∈ e,

for all vertices i and edges e.
A graph G is a |V (G)|-cycle if the there is a bijection τ from V (G) to {1, 2, 3, ... |V (G)|}, such that

E(G) =
{{τ−1(i), τ−1(i+ 1)} : 1 ≤ i ≤ |V (G)|}
∪ {{τ−1(|V (G)|), τ−1(1)}} .

Lemma 2.2. If G is a cycle, then

| det(B(G))| =
{
2, if |V (G)| is odd;
0, if |V (G)| is even.

Proof: We order the vertices according to τ , so that B(G) has the form

B(G) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0 0
0 1 1 0 0 0
0 0 1 0 0 0

. . .
. . .

0 0 0 1 1 0
0 0 0 0 1 1
1 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

2

If |V (G)| is even, then the sum of the odd numbered rows (which equals the vector of all ones) is equal to
the sum of the even numbered rows, hence | det(B(G))| = 0. If |V (G)| is odd, then we can subtract all other
odd-numbered rows from the last row, and add in all even-numbered rows, which has the effect of replacing
the last row of B(G) with (0, 0, 0, ..., 0, 0, 2). The result follows since the product of the diagonal elements
of the resulting upper-triangular matrix is 2.

A graph G is a 1-tree if |E(G)| = |V (G)|, and there exists some edge of G whose deletion renders the
graph acyclic. It is easy to see that a 1-tree consists of a “spanning tree” plus an additional edge which
creates a unique cycle.

Lemma 2.3. If G is a 1-tree, then

| det(B(G))| =
{
2, if the unique cycle of G is odd;
0, if the unique cycle of G is even.

Proof: If G is a cycle, then the result follows by Lemma 2.2, otherwise we proceed inductively. If G is
not a cycle, then it has some vertex i that is adjacent to only one other vertex, say j. The row of B(G)
that corresponds to vertex i has a single nonzero entry which is in the column corresponding to edge {i, j}.
We can expand the determinant along the row of B(G) corresponding to vertex i, and use the inductive
hypothesis and Lemma 2.2 to obtain the result.

A graph is connected if there is no nontrivial partition of the vertices into two disjoint subsets with no
edge having a vertex in both parts of the partition. We note that a connected graph having equal numbers
of vertices and edges is a 1-tree. A connected component of G is a maximal connected subgraph of G.

Lemma 2.4. Suppose that G has V (G) = E(G), and G has q connected components. If each connected
component is a 1-tree with an odd cycle, then | det(B(G))| = 2q otherwise | det(B(G))| = 0.

Proof: We order the vertices of G grouping together those in the same connected component so that B(G)
is block diagonal with q diagonal blocks. The determinant is the product of the determinants of the diagonal
blocks. If each connected component has its number of edges equal to its number of vertices, then each
component is a 1-tree, and the result follows from Lemma 2.3. Otherwise, G must contain a component with
fewer edges than vertices. Such a component must be a tree. We can successively expand the determinant
of B(G) along rows corresponding to edges of the tree as in the proof of Lemma 2.3. The tree has one
more vertex than its number of edges, so we will be left with a row of all zeros, in which case we see that
| det(B(G))| = 0.

We are now ready to prove our complexity result.

Proposition 2.5. If there is an efficient algorithm for the D-optimal experimental design problem (even
just for the problem where f = 0, e = n, s = m, and each potential design point is {0, 1}-valued with two
coordinates equal to 1), then every problem in NP has an efficient algorithm.

Proof: Given a finite simple graph G on m = 3k vertices, let τ be a bijection from V (G) to {1, 2, ..., |V (G)|}.
For each e ∈ E(G) and j, 1 ≤ j ≤ |V (G)|, let

xej =

{
1, if τ−1(j) ∈ e;
0, if τ−1(j) /∈ e.

We consider the problem of finding a D-optimal design with N = E := E(G), F = ∅ and s = m := |V (G)|.
Let S denote an arbitrary subset of N having s elements. Consider the subgraph GS of G defined by
V (GS) = V (G), and E(GS) = S. We have D(S) = Bt(GS)B(GS). Lemma 2.4 implies that | det(B(GS))| ≤
2k, since the greatest number of disjoint 1-trees in a graph on 3k vertices is k, where each such 1-tree is a
triangle. Furthermore, Lemma 2.4 implies that if GS contains fewer than k triangles, then | det(B(G))| < 2k.
Equivalently, det(D(S)) ≤ 4k, with equality if and only if GS is the disjoint union of k triangles. Hence, if
the maximum value of det(D(S)) = 4k, then G can be partitioned into triangles, and if the maximum is less
than 4k, then there is no such partition. The result then follows from Proposition 2.1.

3. Upper Bounds. Initially, we make the simplifying assumption that X(F) has full column rank. This
implies that D(F) = Xt(F)X(F) is invertible, and, moreover, that it is symmetric and positive definite. Let

3

L(F) be the Cholesky factor of D(F). That is, the invertible matrix that has all entries equal to 0 above
the main diagonal, satisfying D(F) = L(F)Lt(F). Such a Cholesky factor always exists and is unique for
a symmetric, positive-definite matrix (see Golub and Van Loan (1983), for example). Let φi(F,E) denote
the Euclidean norm of xi · L−t(F), for i ∈ E \ F . Let τ be a bijection from {1, 2, ..., e− f} to E \ F , such
that φτ(i)(F,E) ≥ φτ(j)(F,E) whenever i ≤ j. Let si(F,E) denote the ith greatest number among the
min{e − f,m} singular values of X(E \ F) · L−t(F), for 1 ≤ i ≤ min{e − f,m}, and let si(F,E) := 0 for
min{e− f,m} < i ≤ e− f . (The nonzero singular values of a matrix A are precisely the square roots of the
nonzero eigenvalues of AtA; see Golub and Van Loan, for example). We define the Hadamard bound

H(F,E, s) := det(D(F))

s−f∏
i=1

(
1 + φ2

τ(i)(F,E)
)
,

and the spectral bound

S(F,E, s) := det(D(F))

s−f∏
i=1

(
1 + s2i (F,E)

)
.

Proposition 3.1.

max{det(D(S)) : F ⊂ S ⊂ E, |S| = s} ≤ min{H(F,E, s),S(F,E, s)} .

Proof: For a real symmetric matrix B, let λi(B) denote the ith greatest eigenvalue of B. First, we note
that D(S) = D(F) +D(S \ F). Hence

det(D(S)) =det
(
D(F) +D(S \ F)

)
=det(D(F)) · det(Is−f +X(S \ F) ·D−1(F) ·Xt(S \ F)

)

=det(D(F))

s−f∏
i=1

λi

(
Is−f +X(S \ F) ·D−1(F) ·Xt(S \ F)

)

=det(D(F))

s−f∏
i=1

(
λi

(
Is−f

)
+ λi

(
X(S \ F) ·D−1(F) ·Xt(S \ F)

))

=det(D(F))

s−f∏
i=1

(
1 + λi

(
X(S \ F) ·D−1(F) ·Xt(S \ F)

))

≤det(D(F))

s−f∏
i=1

(
1 + λi

(
X(E \ F) ·D−1(F) ·Xt(E \ F)

))

=det(D(F))

s−f∏
i=1

(
1 + s2i

(
X(E \ F) · L−t(F)

))

=S(F,E, s) .

thus establishing the spectral bound. We note that the inequality above follows from the interlacing property
of singular values (see Golub and Van Loan, for example).

Additionally, we note that the ith diagonal entry of

Is−f +X(S \ F) ·D−1(F) ·Xt(S \ F)

is 1 + φ2
i . Now, since

Is−f +X(S \ F) ·D−1(F) ·Xt(S \ F)

is symmetric and positive definite, its determinant is no more than the product of its diagonal elements, (see
Golub and Van Loan, for example) thus establishing the Hadamard bound.

4

The bound based on Hadamard’s inequality in Welch has a slightly different form than ours, since in
our setup we incorporate upper bounds on the number of times a design point can be replicated by explicitly
including multiple copies of such points in the design matrix. Since Welch allows arbitrary replication of all
design points, his bound is:

det(D(F))
(
1 + φ2

τ(1)(F,E)
)s−f

.

As the following example indicates, neither the Hadamard bound H nor the spectral bound S always
dominates the other:

Example 3.2. Nondominance. Let

X =

⎛
⎜⎜⎜⎝

1 −1
0 1
1 1
1 0
1 −1

⎞
⎟⎟⎟⎠ ,

and take F = {1, 2}, and E = {1, 2, 3, 4, 5}. We calculate

D(F) =

(
1 −1
−1 2

)
, det(D(F)) = 1 ,

L(F) =

(
1 0
−1 1

)
, L−t(F) =

(
1 1
0 1

)
,

X(E \ F) · L−t(F) =

⎛
⎝ 1 2

1 1
1 0

⎞
⎠ .

We have

s2(F,E) = (4 +
√
10, 4−

√
10, 0) ≈ (7.1623, 0.8377, 0) ,

and

φ2(F,E) = (5, 2, 1) .

For s = 4, the spectral bound is sharper: We have S(F,E, s) = 15 and H(F,E, s) = 18, while the
D-optimal design has S = {1, 2, 3, 5}, with det(D(S)) = 11. On the other hand, for s = 3, the Hadamard
bound is sharper: In this case, we have S(F,E, s) = 5 +

√
10 ≈ 8.1623 and H(F,E, s) = 6, while the

D-optimal design has S = {1, 2, 3}, with det(D(S)) = 6.

In the next example, we investigate how the bounds perform when we allow replication and require
many design points to be selected.

Example 3.3. Heavily Replicated Designs. Let F := {0, 1, 2, ..., f − 1}. Fix a set of f m-vectors x̃i,
i ∈ F . We may assume that {x̃i : i ∈ F} contains m linearly independent points. Let k be a positive
integer, let E = N := {0, 1, 2, ..., (k+ 1)f − 1}, and let xi := x̃i(mod f) for i ∈ N . Let s = sk := f + k. Our
problem, then, is to choose f + k design points from {xi : i ∈ F}, allowing arbitrary nonzero replication,
so as to produce a D-optimal design. We note that for any such problem, det(D(Sk)) will behave like a
polynomial in k of degree m, where Sk indicates the dependence of a D-optimal set of indices on k. In this
situation we have,

H(F,E, sk) = det(D(F)) · (1 + φ2
1)

k ,

where φ1 := maxi∈F {‖xi · L−t(F)‖2}. Thus, in the present situation, the Hadamard bound grows exponen-
tially in k. On the other hand,

S(F,E, sk) = det(D(F))

m∏
i=1

(
1 + k · s2i

)
,

5

where si denotes the ith greatest singular value of X(F) · L−t(F). We note that in this case, the spectral
bound increases as a polynomial in k of degree m.

Therefore, the spectral bound is within a constant factor of the D-optimal value, while the Hadamard
bound is not within a subexponential factor.

To handle the case in which D(F) is singular, we perturb the problem. Let Dα(S) = D(S)+(α/n)D(N).

Let ν̄2 denote the average variance of the least squares estimators of the responses ŷi := xiβ̂, over all i ∈ N ,
where β̂ := D−1(N)Xty. That is,

ν̄2 =
σ2

n

∑
i∈N

xiD
−1(N)xt

i

Lemma 3.4. (Mitchell (1974))

lim
α→0

(
det(Dα(S))− det(D(S))

)/
det(D(S))

α
= ν̄2 .

Thus, we can choose some small α (Mitchell suggests .005; Welch uses .001), and change our criteria to
that of maximizing det(Dα(S)), where

Dα(S) := D(S) + (α/n)D(N) .

Then the relative error related to using det(Dα(S)) rather than det(D(S)) will be approximately αν̄2.
For the sake of precision, let Lα(F)Lt

α(F) be the Cholesky factorization of Dα(F). Let si(F,E, α)
denote the ith greatest number among the min{e− f,m} singular values of X(E \ F) · L−t

α (F), for 1 ≤ i ≤
min{e− f,m}, and let si(F,E, α) := 0, for min{e− f,m} < i ≤ e− f . We define the spectral bound for the
perturbed problem as

Sα(F,E, s) := det(Dα(F))

s−f∏
i=1

(
1 + s2i (F,E, α)

)
.

Similarly, let φi(F,E, α) denote the Euclidean norm of xi · L−t
α (F), for i ∈ E \ F . Let τ be a bijection from

{1, 2, ..., e− f} to E \ F , such that φτ(i)(F,E, α) ≥ φτ(j)(F,E, α) whenever i ≤ j. We define the Hadamard
bound for the perturbed problem as

Hα(F,E, s) := det(Dα(F))

s−f∏
i=1

(
1 + φ2

τ(i)(F,E, α)
)
,

Alternatively, we can simply let N ′ = {(α/n)xi : i ∈ N}, in which case we have

Sα(F,E, s) = S(F ∪N ′, E ∪N ′, s+ n)

and
Hα(F,E, s) = H(F ∪N ′, E ∪N ′, s+ n)

That is, we augment the design space by the n points
√
(α/n)xi, and force them into the solution.

In the following example, we study how the bounds may perform when we require a high degree of
precision (α near 0) in the singular case.

Example 3.5. Precise Bounds in the Singular Case. Let

X =

⎛
⎜⎝

1 1
−1 1
1 0
0 1

⎞
⎟⎠ ,

6

and take F = {1}, E = {1, 2, 3, 4} and s = 3. We have

Dα(F) =

(
1 + 3α/4 1

1 1 + 3α/4

)
,

which has determinant 3α(8 + 3α)/16. We have

s2(F,E, α) = (
4

α
,

4

8 + 3α
, 0) ,

and

φ2(F,E, α) = (
8

3α
,

16 + 12α

24α+ 9α2
,

16 + 12α

24α+ 9α2
) .

It follows that

Sα(F,E, s) =
9(4 + α)2

16
→ 9 (as α → 0).

On the other hand,

Hα(F,E, s) = 7 +
8

3α
+

15α

4
+

9α2

16
→ ∞ (as α → 0).

We note that S = {1, 2, 3} is D-optimal, with det(D(S)) = 6.

Next, we will demonstrate that the behavior of the spectral bound in Example 3.5 is not an anomaly.
That is, we will establish that the spectral bound always converges as α vanishes. For a matrix A, let ρ(A)
denote the rank of A.

Lemma 3.6. There exist constants ai, m− ρ(D(F)) ≤ i ≤ m, such that

det
(
Dα(N)

)
=

m∑
i=m−ρ(D(F))

aiα
i .

Proof.
det

(
Dα(N)

)
=det

(α
n
D(N)

)
· det

(
I +

n

α
X(F) ·D−1(N) ·Xt(F)

)

=αm det
(1

n
D(N)

)
·
ρ(D(F))∏

i=1

(
1 +

1

α
λi

(
nX(F) ·D−1(N) ·Xt(F)

))
,

with the upper limit on the index of the product being justified by noting that

ρ
(
nX(F) ·D−1(N) ·Xt(F)

) ≤ ρ
(
D(F)

)
.

Now
ρ(D(F))∏

i=1

(
1 +

1

α
λi

(
nX(F) ·D−1(N) ·Xt(F)

))
=

ρ(D(F))∑
i=0

ci

(1

αi

)
,

for some ci

(
0 ≤ i ≤ ρ

(
D(F)

))
. The result follows.

Lemma 3.7. There exist constants bj , 0 ≤ j ≤ m− ρ(D(F)), such that

s−f∏
i=1

(
1 + s2i (F,E, α)

) ≤
m−ρ(D(F))∑

j=0

bj

(1

αj

)
.

Proof. For a matrix A, let σi(A) denote the ith greatest singular value of A. We have

s2i (F,E, α) ≤ σ1(X(E \ F)) · σ1(X
t(E \ F)) · λi

((
D(F) +

α

n
D(N)

)−1
)
.

7

Now,

λi

((
D(F) +

α

n
D(N)

)−1
)

= λ−1
m−i+1

(
D(F) +

α

n
D(N)

)

≤ 1

λm−i+1

(
D(F)

)
+ α · λm

(
1
nD(N)

) .

Hence,

s2i (F,E, α) ≤ c

λm−i+1

(
D(F)

)
+ bα

,

for some constants c and b. Now,

λm−i+1

(
D(F)

){= 0, for 1 ≤ i ≤ m− ρ(D(F));
> 0, for m− ρ(D(F)) < i ≤ m.

Therefore, there exists a constant C, such that

s−f∏
i=1

(
1 + s2i (F,E, α)

) ≤ C ·
(
1 +

c

bα

)m−ρ(D(F))

.

The result follows.

Combining Lemmata 3.6 and 3.7, we immediately have the following result.

Proposition 3.8.
lim
α→0

Sα(F,E, s) < ∞.

We can glean from the proofs of Lemmata 3.6 and 3.7 a recipe for constructing an upper bound on the
limit of Proposition 3.8. It would be interesting to find an efficient method for calculating the limit exactly.

4. A Branch-and-Bound Algorithm and Experiments. Branch-and-bound is a classical algorithmic
framework for solving combinatorial optimization problems. The framework does not usually lead to theo-
retically efficient algorithms (in the sense described in Section 2), but it often leads to algorithms that, in a
practical sense, are much better than enumerating all feasible solution. Indeed, for many problems, the best
known-technique is a branch-and-bound method. In general terms the method proceeds as follows: Assume
that we have a maximization problem. We begin by calculating a lower bound (which is usually given by some
heuristically determined feasible solution). Initially, the list of active subproblems is just the given problem.
For each active subproblem, we have calculated an upper bound (which can often be thought of as arising
by solving the problem with some constraints relaxed). The global upper-bound is the maximum, over all
active subproblems, of the calculated upper-bounds. At each major iteration, we remove a subproblem from
the list of active subproblems, and create some new subproblems which, taken together, admit all possible
solutions that were admitted by the subproblem that was just removed. We calculate the upper bound for
each new subproblem: If the upper bound is less than the lower bound then we discard the new subproblem
(in this case, we say that the subproblem is fathomed by bounds). After repeated subdivision, it will be
the case that some subproblems can be subdivided no further (in this case, we say that the subproblem is
fathomed by feasibility). Occasionally, we may run further heuristics to increase the lower bound. We may
stop when the list of active subproblems is empty, or when the global upper-bound and the lower bound
are tolerably close. The quality of the bounds strongly influences the number of subproblems that must be
solved. We note that some branch-and-bound methods (e.g., for integer programming (see Nemhauser and
Wolsey (1988))) have the luxury of stumbling upon feasible solutions as they calculate the upper bounds,
and thus allowing additional fathoming; unfortunately, the geometry of our design problems does not enable
this to occur.

For the D-optimal design problem, we subdivide the problem P (F,E, s) by choosing some i ∈ E \ F .
We create the subproblem P (F ∪{i}, E \ {i}, s− 1) if s > |F |, and we create the subproblem P (F,E \ {i}, s)

8

if s < |E|. Of course, if s = |E| (resp. s = |F |), we can immediately fathom by feasibility since the only
feasible solution is to choose S = E (resp. S = F).

Our goal in computational testing is not to attempt to prove that the spectral bound is uniformly better
than the Hadamard bound; indeed, it is not uniformly better. It appears that a judicious use of both bounds
is warranted in a branch-and-bound framework. Our goal is to document situations where the spectral bound
is useful.

For the initial lower bound, we use a greedy approach followed by a variant of the Wynn-Mitchell
exchange algorithm. We start with S = F . As long as |S| < s, we repeatedly append i∗ ∈ E \ S to S, if
det(D(S∪{i})) is maximized by i = i∗, over i ∈ E \S. If D(F) is singular, we may seek the greatest increase
in det

(
Dα(·)

)
, for some small positive α (see Section 3). Once the greedy phase terminates, we initiate an

interchange phase. That is, we repeatedly replace S with S \{i∗}∪{j∗} if det(D(S \{i}∪{j})) is maximized
by i = i∗ and j = j∗ over i ∈ S and j ∈ E \ S, and det(D(S \ {i∗} ∪ {j∗})) > det(D(S)).

As our main goal was to investigate the quality of the bounds (in a branch-and-bound setting), we were
not concerned with developing an extremely efficient implementation. For ease of implementation, we coded
the algorithm in MATLAB, which has easy-to-use matrix facilities in addition to the usual programming
constructs of a high-level language. We ran our code on an HP 9000/715 workstation with 32MB of RAM
(some of the problems used more memory than this, and they ran rather slowly since information needed to
be swapped in and out of main memory).

Our first set of (10) problems is based on generating design matrices in which the entries are i.i.d.
uniform pseudorandom deviates. All of the problems had: n = 30, m = f = 10, s = 20. Our results
are summarized in Table 1. The column labeled “#” contains the problem identifiers; the column labeled
“Hadamard” contains the number of subproblems that were not fathomed by feasibility, when just the
Hadamard bound was used (we note that the numbers of these “bound calls” compare quite favorably with
the number of feasible designs

(
n−f
s−f

)
=

(
20
10

)
= 184, 756). In parentheses, the maximum number of active

subproblems is reported. The column labeled “Spectral” reports the same information when the spectral
bound was used instead. The column labeled “Both” reports the same information when both bounds were
used.

The second set of (10) problems is just like the first set, except the entries in the design matrices are
i.i.d. normal pseudorandom deviates. These results are summarized in Table 2. We note that although the
uniform problems tend to be harder than the normal problems, the relative performance of the bounds is
comparable.

The third and fourth sets of (10) problems are just like the first two sets, except we have: n = 40,
m = f = 10, s = 30. We note that the number of feasible designs is

(
30
20

)
= 30, 045, 015. For these problems,

all computations were carried out using both bounds, as solving them using only one of the bounding methods
proved to be too computationally burdensome. The results are summarized in Tables 3 and 4.

The fifth set of (14) problems is based on the 3-factor quadratic response model:

y = β0 + β1z1 + β2z2 + β3z3 + β11z
2
1 + β22z

2
2 + β33z

2
3 + β12z1z2 + β13z1z3 + β23z2z3 + ε .

Following Welch, our model allows each factor to assume 3 levels which are encoded as 0,1,2. So we are
lead to a design matrix with n = 33 = 27 rows and m = 10 columns. We have set f = 10 and have fixed
the 10 design points with z1 + z2 + z3 ≤ 2. We solved the problems having 12 ≤ s ≤ 25. The results are
summarized in Table 3, where problem “qi” has s = i. This series of problems gives a good indication of how
the bounds may perform as we vary the number of rows s to be selected. We note that both bounds tend to
fathom more easily on these problems than on the ones with random design matrices; of course, these are
combinatorially simpler problems having at most

(
n−f
s−f

)
=

(
17
9

)
= 24, 310 feasible designs.

In all of our results we noticed that the spectral bound was much more likely to fathom a subproblem
that just had a point fixed out, while the Hadamard bound was much more likely to fathom a subproblem
that just had a point fixed in. Indeed, even when the spectral (resp. Hadamard) bound substantially
outperformed the Hadamard (resp. spectral) bound overall on a complete run on a problem, the Hadamard
(resp. spectral) bound was often the winner over subproblems that just had a point fixed in (resp. out). We
can easily take advantage of this, by having the order in which we compute the bounds depend on whether
a point was just fixed in or fixed out; then we may not have to compute the second bound if the first one
fathomed.

9

It turns out that in many instances, the spectral bound is a clear winner early in the branching process,
but for many of those subproblems even the spectral bound is not sharp enough to fathom. Still, the spectral
bound tends to do alot of the fathoming early in the branching process, while the Hadamard bound does
much of its fathoming later in the branching process.

Acknowledgement

We are grateful to Maurice Queyranne for introducing us to the problem.

10

Hadamard Spectral Both

u1 4163 (623) 4438 (526) 2103 (283)
u2 5252 (883) 4559 (574) 2557 (432)
u3 18565 (2961) 7162 (633) 4665 (460)
u4 15808 (2406) 19250 (2066) 8202 (859)
u5 5976 (570) 6106 (636) 2235 (233)
u6 16482 (2116) 12822 (1351) 8187 (788)
u7 12065 (1373) 8666 (967) 4570 (491)
u8 17538 (2167) 23358 (2737) 11360 (1067)
u9 8428 (928) 9117 (741) 3104 (257)
u10 16036 (2398) 15185 (1689) 9752 (1107)

Table 1: Uniform (n = 30,m = f = 10, s = 20)

Hadamard Spectral Both

n1 5282 (713) 8158 (863) 3122 (356)
n2 16748 (2428) 7500 (1003) 5650 (744)
n3 5126 (608) 4537 (405) 1907 (128)
n4 20101 (3356) 8703 (1095) 6370 (760)
n5 13904 (2712) 8554 (886) 6435 (720)
n6 10823 (1572) 10473 (972) 5902 (504)
n7 9718 (1198) 9364 (916) 3493 (326)
n8 9481 (1298) 7467 (815) 3147 (316)
n9 4808 (516) 1968 (163) 1311 (96)
n10 16985 (2279) 14315 (1519) 7240 (647)

Table 2: Normal (n = 30,m = f = 10, s = 20)

11

Both

u11 258945 (20222)
u12 609663 (75948)
u13 446192 (45556)
u14 280977 (25313)
u15 308498 (25616)
u16 575589 (48052)
u17 192331 (21477)
u18 312172 (36321)
u19 268546 (24445)
u20 407029 (39894)

Table 3: Uniform (n = 40,m = f = 10, s = 30)

Both

n11 39015 (2598)
n12 174608 (16178)
n13 208393 (20313)
n14 811939 (70906)
n15 219492 (19767)
n16 131066 (9250)
n17 414009 (35564)
n18 400110 (34665)
n19 124665 (11541)
n20 248843 (23941)

Table 4: Normal (n = 40,m = f = 10, s = 30)

12

Hadamard Spectral Both

q12 30 (1) 53 (5) 30 (1)
q13 158 (9) 160 (11) 117 (6)
q14 392 (30) 377 (28) 266 (17)
q15 1508 (151) 1343 (113) 972 (72)
q16 3562 (428) 3078 (301) 2212 (198)
q17 6524 (902) 5014 (531) 3895 (377)
q18 10435 (1574) 8661 (934) 6914 (726)
q19 12313 (1987) 10190 (1208) 8484 (940)
q20 11281 (1916) 9467 (1245) 8051 (986)
q21 7927 (1384) 6594 (886) 5686 (729)
q22 4297 (748) 3663 (486) 3154 (432)
q23 1747 (292) 1490 (186) 1285 (181)
q24 537 (78) 472 (56) 415 (56)
q25 121 (13) 118 (12) 108 (11)

Table 3: Quadratic Response with 3 Factors at 3 Levels (n = 27,m = f = 10)

13

References

[1] A.C. Atkinson and A.N. Donev, Algorithms, Exact Designs and Blocking in Response Surface and
Mixture Designs, in Optimal Design and Analysis of Experiments, Y. Dodge, V.V. Federov and H.P.
Wynn (editors), Elsevier Science Publishers B.V., Amsterdam (1988), pp. 61-69.

[2] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, North Holland, New York (1976).
[3] M.J. Box and N.R. Draper, Factorial Designs, the |X ′X | Criterion, and Some Related Matters, Tech-

nometrics 13 (1971), 731-742.
[4] R.D. Cook and C.J. Nachtsheim, A Comparison of Algorithms for Constructing Exact D-Optimal De-

signs, Technometrics 22 (1980), 315-324.
[5] Y. Dodge, V.V. Federov and H.P. Wynn, Optimal Design of Experiments: An Overview, in Optimal

Design and Analysis of Experiments, Y. Dodge, V.V. Federov and H.P. Wynn (editors), Elsevier Science
Publishers B.V., Amsterdam (1988), pp. 1-11.

[6] O. Dykstra, Jr., The Augmentation of Experimental Data to Maximize |X ′X |, Technometrics 13 (1971),
682-688.

[7] V.V. Fedorov, Theory of Optimal Experiments, Academic Press, New York (1972).
[8] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness,

W.H. Freeman and Co., San Francisco (1979).
[9] G.H. Golub and C.F. Van Loan, Matrix Computations, The Johns Hopkins University Press, Baltimore

(1983).
[10] C.W. Ko, J. Lee and M. Queyranne, An Exact Algorithm for Maximum Entropy Sampling, to appear

in Operations Research, (1994).
[11] T.J. Mitchell, An Algorithm for the Construction of “D-Optimal” Experimental Designs, Technometrics

16 (1974), 203-210.
[12] T.J. Mitchell, Computer Construction of “D-Optimal” First-Order Designs, Technometrics 16 (1974),

211-220.
[13] G.L. Nemhauser and L.A. Wolsey (1988), “Integer and Combinatorial Optimization,” Wiley, New York.
[14] R.C. St. John and N.R. Draper, D-Optimality for Regression Designs: A Review, Technometrics 17

(1975), 15-23.
[15] K. Smith, On the Standard Deviations of Adjusted and Interpolated Values of an Observed Polynomial

Function and its Constants and the Guidance They Give Towards a Proper Choice of the Distribution
of Observations, Biometrika 12 (1918), 1-85.

[16] A. Wald, On the Efficient Design of Statistical Investigations, Annals of Mathematical Statistics 14
(1943), 134-140.

[17] W.J. Welch, Branch-and-Bound Search for Experimental Designs Based on D Optimality and Other
Criteria, Technometrics 24 (1982), 41-48.

[18] H. Yonchev, New Computer Procedures for Constructing D-Optimal Designs, in Optimal Design and
Analysis of Experiments, Y. Dodge, V.V. Federov and H.P. Wynn (editors), Elsevier Science Publishers
B.V., Amsterdam (1988), pp. 71-80.

14

